Increasing energy efficiency and Hydrogen Economy - the contribution of the chemical industry to a 'climate-neutral economy'

"Green Hydrogen" as a feedstock for the chemical industry/various industrial sectors and sub-sectors

Three pathways towards climate neutrality (example Germany = +/- 25% of EU chemical industry)

Referenzpfad

Mrd. € zusätzliche Investitionen

54 TWh Strombedarf pro Jahr

Technologiepfad

15 Mrd. € zusätzliche Investitionen

224 TWh Strombedarf pro Jahr

Pfad Treibhausgasneutralität

45 Mrd. € zusätzliche Investitionen

628 TWh Strombedarf pro Jahr

Electricity-/H2 needs Climate Neutrality (Germany)

Electricity flows for Climate Neutrality (e.g. Germany)

Technology mix for providing synthetic Naphtha in 2050

Pathways for Olefin/Aromatics production with electrified cracker

Energy flows with synthetic Naphtha in 2050

Three options towards HVC

Energy losses from non usable products

Ammonia

$$N_2 + 2 H_2 \rightarrow 2 NH3$$

Produced H2 completely in Product

Methanol

$$CO_2 + 3 H_2 \rightarrow CH_3OH + -H_2O$$
 produced H2 partly in by-product

Depending on process energy for H2 production that does not completely transfer into desired product

A lion share of the energy input is however being passed into desired molecule

Diversifying H2 production?

National and EU H2 Strategies focus on green H2

- Transformation role for other H2 proveniences
- H2 electrolysis vs. Chlor-Alkali-Elektrolysis

Diversifying H2 production?

- Sustainability assessment of H2-production according to ghg footprint
- Methanpyrolysis (in future)
- CCS/CCU
- Biomethane reforming
 Possibly electricty demand reduktion

$$C^{(s)}+2H_2^{(g)}$$

$$\Delta H_{\Gamma}^{O}=+37\frac{kJ}{\text{mol } H_2}$$

Technology mix for synthetic Naphtha in 2050

		Technology	
Nr.	Technology	share (%)	Mass [t]
1	Elektrolysis+ Fischer-Tropsch-Synthesis	62,6%	13,46
2	Biomass gasification + Fischer-Tropsch-Synthesis	10,0%	2,15
3	Reformed Cracker-Methan + Fischer-Tropsch	20,0%	4,30
4	Plastics waste gasification + Fischer-Tropsch	3,7%	0,80
5	Pyrolysis oil from chemical recycling	3,7%	0,80
	Total	100,0%	21,50

Feedstock mix of the future

Hydrogen and sector coupling

How to decarbonise several sectors: H₂ versus other options

Transportation

"Electrification" of transport either direct (via battery) or via H₂ and fuel cells

Electrification for passenger cars via batteries seems more efficient

Via batteries:
3.5 - 4.5 km/kWh

 \triangleright Via H₂ and fuel cells: 0.8 - 1.5 km/kWh (H₂ via water electrolysis)

For heavy duty, the picture is a bit different

Transportation: Is hydrogen efficient?

Transportation

- Passenger cars
 - Europe has 286 million passenger cars and they drive on average 12000 km/year.
 - If they were all electrified before 2050; they would need...
 - Via batteries 760 980 TWh
 - Via H₂ 34 38 million ton H₂ (if produced via electrolysis 2300 4300 TWh needed)
- What about other transport: trucks, busses, ships, planes?
 - If they would have to operate on H_2 this would require approx. 33 47 million ton H_2 (if produced via electrolysis 2500 3600 TWh needed)

Transport with H_2 would decrease energy efficiency but if H_2 is produced from fossil with CO_2 capture it would give a relief in the demand for renewable electricity

Heating of houses and other buildings

- Several options possible
 - Using heat-pumps: might only be feasible for newer well-insulated houses
 - Using direct electrical heating
 - Using hydrogen, biomethane, or artificial methane (from CO₂ and H₂)
 - Using hydrogen via fuel cells: benefit: producing heat and electricity
 - Using "waste heat" of industry, etc.

Heating of houses and other buildings

Heat-pump (requires very well insulated building)

Direct electrical heating

H₂ from electrolysis

Electricity generation 1 MWh

Electricity generation 1 MWh

Electricity 1 MWh

Transmission losses 10%

Transmission losses 10%

Transmission losses 5%

Electricity 1 MWh

Transmission losses 5%

Electrolysis 67%

Heat pump seasonal COP 2.7

Electrical heating

95% eff

H₂ transport loss 5%

Boiler 90%

Electrolysis 67%

H₂ transport loss 5%

Heat generation 2.43 MWh

Heat generation 0.855 MWh

Heat generation

0.544 MWh

Fuel cell 50% E and 40% heat

Efficiency 243%

(the heat comes from cooling surrounding air or the ground)

Efficiency 85.5%

Efficiency 54.4%

Heat generation 0.302 MWh and Electricity .242 MWh

Efficiency 54.4%

Heating of houses and other buildings

- > Households and services use approx. 300643 ktoe (equals to 3500 TWh)
- > Several options possible
 - Using heat-pumps, might only be feasible for newer well-insulated houses, would reduce energy consumption to 1440 TWh (as electricity)
 - Using direct electrical heating would require approx. 3500 TWh (as electricity)
 - Using hydrogen produced with electricity would require approx. 6450 TWh producing approx.
 94 million ton H₂
 - Using hydrogen produced with electricity and using fuel cells would require approx. 11600 TWh on electricity to produce 178 million ton H_2 but fuel cell deliver back 2800 TWh

Heat Pumps would be the ideal solution, but requires extremely well insulated buildings (what is the effect of extracting heat from air and/or ground??), Direct heating via electricity is second best; H₂ (from electrolysis) to be used as fuel or being used in a fuel cell does not seem to be a realistic/efficient option.

Steel industry

- European steel industry produces 98 million (?) ton steel from ore
- Today this is a large CO₂ emitter

Steel industry

- One of the options to reduce emissions is by making use of H₂ produced via electricity this requires 3.8 MWh/ton
 - Total demand on electricity 373 TWh
 - Of which 255 TWh for H₂ (4.2 million tons)
- Other options are
 - Making use of CCS
 - Direct electrolysis

Industry, heating requirements

- Industry uses 172003 ktoe (equals to 2000 TWh) as energy (excl. electricity)
- Energy could be replaced by hydrogen, biomethane, artificial methane, bio-mass, direct electricity heating
 - This would require 50.5 million ton H₂.
 If produced via electrolysis, it would require 3300 TWh of electricity
 - Direct electrical heating would require 2000 TWh (possible at high temp?)

Direct heating via H₂ from electrolysis does not seem to be an efficient option if the H₂ is produced via electrolysis.

Industry, replacing feedstock

- Industry uses 97865 ktoe (4097.4 million GJ; equals to 1140 TWh) as feedstock
- \triangleright To maintain or to replace by alternatives via H₂ + CO₂?
- Some examples:
 - Production of methanol approx. 1.5 million ton/year
 - Today based on mainly methane; requires 37.5 million GJ (0.9% of feedstock demand)
 - Alternative production out of CO₂ and H₂; requires 0.281 million ton H₂ this requires approx. 18 TWh on electricity (= 65813 TJ = 65.8 million GJ); 1.8 times the energy amount compared to starting from methane as feedstock
 - Production of NH₃ approx. 17 million ton/year
 - Fraditional steam reforming of methane to produce H_2 and that reacts with N_2 to NH_{3} ; feedstock requirement 21 GJ/ton NH_3 ; Yearly feedstock demand 357 million GJ (8.7% of feedstock demand)
 - Alternative H_2 from N_2 and H_2 : requires 3 million ton H_2 /year or 195 TWh of electricity (702 million GJ); approx. 2 times more feedstock energy

Industry, replacing feedstock

- Production of ethylene and propylene; ethylene 22 million/year and propylene 17 million ton/year.
 - Today mainly by cracking of naphtha delivers a range of products (propylene, ethylene, benzene, toluene, xylene, and gas (used to heat the process)).
 - Ethylene/propylene is approx. 35-45% of the output
 - So for 22 million ton ethylene and 17 million ton propylene approx. 86 -111 million ton of naphtha is required, delivering besides the ethylene/propylene approx. 30% other valuable products. Approx. 30% is used as energy.
 - · Based on the HHV of naphtha the total energy input is approx. 4700 million GJ
 - Alternative production from methanol (produced from H₂ and CO₂); each ton of propylene or ethylene requires 2.28 ton of methanol, or 0.429 ton of H₂ or 25.75 MWh. On top of that there is some energy required for the process. According Dechema the average energy demand for this process is 95.6 GJ/ton so for 67 million ton of HVC the total energy demand 6405 million GJ or 1.4 times more

Product	Low severity (1000 K residence time 0.5 s)	High severity (1150 K, residence time 0.1 s)
Hydrogen	1	1
Methane	15	18
Ethene	19	32
Propene	16	13
C ₄ hydrocarbons	10	9
RPG	36	18
Others	3	9

Table 2 Product yields/% by mass from the steam cracking of naphtha.

https://www.essentialchemicalindustry.org/processes/cracking-isomerisation-and-reforming.html

Industry, replacing feedstock

- Replacing feedstock via all kinds of new chemical routes would require approx. 2000 TWh.
- \triangleright This is mainly based on routes via CO_2 and H_2
 - > Approx. 30 million ton H₂

Summary

H2 plays a major role in the chemical industry:

- Biggest industrial user
- Climate-neutral chemical production technologically possible by 2050

H2 plays a key role:

- Enables CO₂ to become a raw material (c- provider)
- Can be used energetically (e.g. in high temperature processes) or as feedstock in other sectors

Challenges:

- Long-term high electricity needs (for electrolysis)
- Energy efficiency losses
- Requires enabling framework and breakthroughs for economic feasibility

Political perspectives

Technology openness for sustainable H2 provision at least during transistion period Improvement of framework conditions for cost-efficient deployment of renewable energy sources

H2 depends on low-cost electricity (e.g. max. 4 Cent/KWh)

Early development of energy partnerships with other countries whilst maintaining national value chains

Building H2 grid infrastructures

Public acceptance of costs and infrastructures

Supporting introduction of new climate-neutral technologies

